
UNIT-IV 

Basic Traversal & Search Techniques: Techniques for Binary Trees and Graphs, 

Connected Components and Spanning Tress, Bi-Connected Components and DFS. 

 

Sets and Disjoint set Union: Introduction, Union and Find operations. 

 

Techniques for Binary Trees: 
When the search necessarily involves the examination of every vertex in the object being 

searched, it is called a traversal. 

There are many operations that we want to perform on binary trees. 

When traversing a binary tree, we want to treat each node and its sub trees in the same 

fashion. If we let L,D,and R stand for moving left, printing the data, and moving right when 

at a node,then there are six possible combinations of traversal: LDR, LRD, DLR, DRL, RDL, 

and RLD.If we adopt the convention that we traverse left before right,then only three 

traversals remain:LDR, LRD, and DLR. 

To these we assign the names In-order, Post-order, and Pre-order 

 

 

treenode= record  

{  

Typedata;// Type isthe datatype of data, 

 treenode*lchild; treenode*rchild;  

} 

  

 

1.Algorithm In-Order(i) 

{ 

if t!= 0 then 
{ 

In-0rder (t->lchild) 

Visit(i); 

In-0rder (t->rchild) 

} 

} 

 

Uses of In-order Traversal: 

 In the case of binary search trees (BST), In-order traversal gives nodes in non-

decreasing order. 

 To get nodes of BST in non-increasing order, a variation of In-order traversal where 

In-order traversal is reversed can be used. 

 In-order traversal can be used to evaluate arithmetic expressions stored in expression 

trees. 

 

2.Algorithm Pre-Order(i) 

{ 

if t!= 0 then 
{ 

Visit(i); 

Pre-0rder (t->lchild) 

Pre-0rder (t->rchild) 

} 

} 

 



Uses of Preorder Traversal: 

 Pre-order traversal is used to create a copy of the tree. 

 Pre-order traversal is also used to get prefix expressions on an expression tree.  

 

 

 

3.Algorithm Post--Order(i) 

{ 

if t!= 0 then 
{ 

Post-0rder (t->lchild) 

Post-0rder (t->rchild) 

Visit(i); 

} 

} 

Uses of Post-order Traversal: 

 Post-order traversal is used to delete the tree. See the question for the deletion of a 

tree for details. 

 Post-order traversal is also useful to get the postfix expression of an expression tree.  

 Post-order traversal can help in garbage collection algorithms, particularly in systems 

where manual memory management is used. 
 

 
 

In order: FDHGIBEAC 

Pre order: ABDFGHIEC 

Post order: FHIGDEBCA  

 

 

 

Techniques for graphs: 

 
A fundamental problem concerning graphs is the reachability problem. .In its simplest form it 

requires us to determine whether there exists a path in the given graph G = (V, E) such that 

this path starts at vertex v and ends at vertex u. 

Two search methods for this 

 

1. Breadth first search (BFS) or Level order traversal 

2. Depth First Search (DFS) 

 

Breadth first search (BFS): 

 

In breadth first search we start at a vertex v and mark it as having been reached(visited). The 

vertex v is at this time said to be unexplored. A vertex is said to have been explored by an 

algorithm when the algorithm has visited all vertices adjacent from it. All unvisited vertices 

adjacent from v are visited next.These are new unexplored vertices. Vertex v has now been 

explored.The newly visited vertices haven't been explored and are put onto the end of a list of 

unexplored vertices. The first vertex on this list is the next to be explored. Exploration 

https://www.geeksforgeeks.org/write-a-c-program-to-delete-a-tree/
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continues until no unexplored vertex is left.The list of unexplored vertices operates as a 

queue and can be represented using any of the standard queue representations  

 

 

Algorithm  BFS(v) 

{ 

u :=v;  

visited[v]=1; 

repeat 

{ 

for all vertices w adjacent from u do 

{  

if (visited[w]= 0) then 

{  

Add w to q; 

visited[w] :=1; 

} 

} 

if q is empty then return; 

 Deleteu from q;  

. } 

until(false) 

} 

BFSsequence:1 2 3 4 5 6 7 8 :

 
If BFS is used on a connected undirected graph G, then all vertices in G get visited and the 

graph is traversed .However, if G is not connected, then at least one vertex of G is not visited. 

A complete traversal of the graph can be made by repeatedly calling BFS each time with a 

new unvisited starting vertex. The resulting traversal algorithm is known as breadth first  



 

Depth First Search and Traversal: 

 

A depth first search of a graph differs from a breadth first search in that the exploration of a 

vertex v is suspended as soon as a new vertex is reached. At this time the exploration of the 

new vertex u begins. When this new vertex has been explored, the exploration of v continues. 

The search terminates when all reached vertices have been fully explored.  

 

Algorithm DFS(v) 

{ 

visited[v] :=1; 

for each vertex w adjacent from v do  

{  

 if (visited[w]= 0) then DFS(w); 

} 

} 

 

Fig: Algorithm:  Depth first search of a graph 

DFS sequence :1  2  4  8  5  6  3  7 

 

 

Connected Components and Spanning Tress: 

 

If G is a connected undirected graph, then all vertices of G will get visited on the first call to 

BFS (Algorithm 6.5).If G is not connected, then at least two calls to BFS will be needed. 

Hence, BFS can be used to determine whether G is connected. 

 

 

 

 
 

 



 

 

 

Biconnected components and DFS: 

 

 

Here we consider Undirected graph. A vertex v in a connected graph G is an articulation 

point if and only if the deletion of vertex v together with all edges incident to v disconnects 

the graph into two or more nonempty components 

A graph G is biconnected if and only if it contains no articulation points. The graph of  

 

 
 is not biconnected.  

 
 

The graph is biconnected. The presence of articulation points in a connected graph can be an 

undesirable feature in many cases.    

 
Two biconnected components can have at most one vertex in common and this vertex is an 

articulation point. 

 

Since every biconnected component of a connected graphG contains at least two vertices 

(unlessG itself has only onevertex),it follows that the Wj of line5 exists. Example6.4Usingthe 

above scheme to transform the graph of Figure 6.6(a) into a biconnected graph requires us to 

add edges(4,10) and (10,9) (corresponding to the articulation point 3),edge(1,5) 

(corresponding articulation point 2),and edge(6,7) (corresponding to point 5).  



 
 

 

 

 

 
 

 

 

 

Figure6.9(a) and (b) shows a depth first spanning tree of the graph of the above Figure. In 

each figure there is a number outside each vertex. These numbers correspond to the order in 

which a depth first search visits these vertices and are referred to as the depth first numbers 

(dfns) of the vertex. Thus, dfn[l]= 1,dfn[4] = 2,dfn[6] = 8,and soon. In Figure6.9(b) solid 

edges form the depth first spanning tree. These edges are called tree edges. Broken edges(i.e., 

all the remaining edges)are called back edges. 

 For each vertex it, define L[u] as follows:  

 

L[u] =min {dfn[u], min {L[w} / w is achild of u},min {dfn[w] /(u,w) is a back edge}}  

It should be clear that L[u]is the lowest depth first number that can be reached from it using a 

path of descendents followed by at most one back edge. From the preceding discussion it 

follows that if u is not the root, then it is an articulation point iff it has a child w such that 

L[w] >dfn[u]. 

Example6.5 For the spanning tree of Figure6.9(b) the L values are L[l:10]= 

{1,1,1,1,6,8,6,6,5,4}. Vertex3 is an articulation point as child10 has L[10] = 4 and dfn[3]= 



3.Vertex2 is an articulation point as child 5 has L[5]= 6 and dfn[2] = 6.The only other 

articulation point is vertex5; child6 has L[6]= 8 and dfn[5] = 7. 

 

 

 

 

 

Sets and Disjoint set Union: Introduction, Union and Find operations. 

 

Introduction : 
 

Set:Collection of finite set of elements 

Example : S= {1,2,3,4,5} 

Disjoint set:  if Si and Sj are two sets, then there is no element that is in both Si and Sj .For 

example,when n = 10,the elements can be partitioned into three disjoint sets, ,Si= {1,7,8,9}, 

and Sj= {3,4,6}.  

Figure2.17shows one possible sets. In this representation, S2= {2,5,10}, representation for 

these each set is represented as a tree. Notice that for each set we have linked the nodes from 

the children to the parent,rather than our usual method of linking from the parent to the 

children. There as on for this change in linkage becomes apparent when we discuss the 

implementation 

 

 
 

 

The operations we wish to perform on these sets are:  

1. Disjoint set union: If Si and Sj are two disjoint sets, then their union SiUSj= all elements 

x such that x is in Si or Sj.Thus S1US2 = {1, 7, 8,9,2,5,10}. Since we have assumed that all 

sets are disjoint, we can assume that following the union of Si and Sj,the sets Si and Sj do not 

exist independently; that is,they are replaced by SiUSj in the collection of sets. 

2.Find(i):Given the element i, find the set containing i. Thus,4 is in set S3,and 9 is in set S.  

 

Union and Find Operations:  
Let us consider the union operation first. Suppose that we wish to obtain the union of Si and 

S2 (from Figure2.17). Since we have linked the nodes from children to parent, we simply 

make one of the trees a sub tree of the other.S1US2 could then have one of the 

representations 

 



 
 

Field of one of the roots to the other root.This can be accomplished easily if, with each set 

name,we keep a pointer to the root of the tree representing that set.If, in addition,each root 

has a pointer to the set name,then to determine which set an element is currently in, we 

follow parent links to the root of its tree and use the pointer to the set name.The data 

representation for Si,S2,and S3may then take the form shown in Figure2.19. In presenting the 

union and find algorithms, we ignore the set names and identify  just by the roots of the trees 

representing them.Thissimplifie 

 

 
 

Element i is in a tree with root j, and j has a pointer to entry k in the set name table,then the 

set name is just name[k].If we wish to unite sets Si, and Sj,then we wish to unite the trees 

with roots FindPointer(S'j) and FindPointer(/Sj).Here FindPointer is a function that takes a set 

name and determines the root of the tree that represents it. This is done by an examination of 

the [set name,pointer]table.In many applications the set name  is just the element at the 

root.The operation of Find(i)now becomes: Determine the root of the  tree containing element 

i.The function Union(i, j) requires two trees with roots i and j be joined. Also to simplify, 

assume that the set elements are the numbers1through n. Since the set elements are 

numbered1through n, we represent the tree nodes using an array p[1:n],where n is the 

maximum number of elements. The ith element of this array represents the tree node that 

contains element i. This array element gives the parent pointer of the corresponding tree 

node.Figure2.20showsthis representation of the sets Si,S2,and S3of Figure2.17 



 We can now 

implement Find(i) by following the indices,starting at i until we reach a node with parent 

value .For example,Find(6) starts at 6 and then moves to 6'sparent,3.Since p[3]is negative,we 

have reached the root.The operation Union(i,j) is equally simple.We pass in two trees with 

roots % and j. Adopting the convention that the first tree becomes a sub tree of the second, 

the statement p[i]:=j; accomplishes the union. 

 

 

 
Union(l,2), Union(2,3), Union(3,4), Union(4,5),... , Union(n)=(1,n) Find(l),Find{2),..., 

Find{n) This sequence results in the degenerate tree of Figure2.21.  

 

 
 

Definition:[Weighting rule for Union(i,j)]If the number of nodes in the tree with root i is less 

than the number in the tree with root j, then make j the parent of i; otherwise make i the 

parent of j 

 

When we use the weighting rule to perform the sequence of set unions given before,we obtain 

the trees of Figure2.22. In this figure,the unions have been modified so that the input 

parameter values correspond to the roots of the trees to be combined. To implement the 

weighting rule,we need to know how many nodes there are in every tree. To do this easily, 

we maintain a count field in the root of every tree.If i is a root node,then count[i] equals the 

number of nodes in that tree. Since all nodes other than the roots of trees have a positive 

number in the p field,we can maintain the count in the p field of the roots as a negative 

number 



 

 
Definition:[Collapsingrule]:If j is a node on the path from i to its root and p[i]  root[i], then 

set p[j]  to root[i]. CollapsingFind(Algorithm 2.15)  incorporates the collapsing rule 

 

 

Consider the tree created by Weighted Union on the sequence of unions of Example2.4.Now 

process the following eight finds: Find(8),Find(8),..., Find(8) If Simple Find is used,each 

Find(8) requires going up three parent link fields for a  total of 24 moves to 

Process all eight finds. When CollapsingFind is used, the first Find(8) requires going  up 

three links and then resetting two links. Note that even though only two parent links need to 

be reset,CollapsingFind will reset three(the parent of 5 is reset to 1).Each of the remaining 



seven finds requires going up only one link field.The total cost is now only 13 moves.

 
 

 


